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Abstract—The present study investigated the use of 

ensemble empirical mode decomposition (EEMD) based 

residual signals for the condition monitoring and fault 

diagnosis in the bearings. The acquired signals were 

decomposed using EEMD technique to obtain intrinsic 

mode functions (IMFs). For further processing the 

sensitive IMFs were selected on the basis of their similarity 

index with the original signal. The residual signal is then 

obtained by subtracting the ineffective IMFs from the 

effective IMFs. After that the five statistical features 

(namely: Root mean square value (RMS), crest factor 

(CF), peak-to-RMS (pk2rms), impulse factor (IF) and 

kurtosis (Ku)) and five entropy based features (namely: 

Approximate entropy (ApEn), permutation energy (PE), 

Sample entropy (SampEn), dispersion entropy (DE), and 

fuzzy entropy (FzEn)) were extracted from residual signal. 

The extracted features were fed to the two state-of-the-art 

classifiers, support vector machine (SVM) and random 

forest (RF) for the classification of different bearing faults. 

The analysis of results shows that the proposed method has 

potential for identifying and classifying different bearing’s 

faults 

 

Keywords—Vibration analysis, Fault diagnosis, EEMD, 

Residual signals. 

 

I. INTRODUCTION 

A bearing is a rotating machine element which supports the 

load, provides relative motion with minimum friction. Rolling 

contact bearings are also called anti friction bearings and these 

types of bearings are not suitable for shock loads due to poor 

damping and balls are subjected to plastic deformation under 

shock loads leading to noise and vibrations (Tandon and 

Choudhury, 1999).The health of the machine can be 

determined by condition monitoring techniques 

(CMTs).(Jardine et al., 2006).The vibration signal is highly 

sensitive to bearing status, allowing characteristic information 

closely related to bearing failure to be extracted. Fourier 

transform, wavelet transform, and Empirical Mode 

Decomposition (EMD) are extensively used methods for 

extracting vibration signal features. EMD has higher signal 

processing capabilities than the two approaches discussed 

above, allowing it to effectively analyze signals with more 

complicated features. It has been observed that EEMD is very 

promising to denoise the complex machine signals. It is 

combined with different entropy approach for the machine 

fault diagnosis. The entropy has been proved as a good 

indicator to reflect system complexity. But most of the entropy 

methods are sensitive to selected parameters. In the present 

study the EEMD is used as denoising techniques and five 

statistical and five entropy parameters are considered as 

feature vectors to reflect the condition of the bearing. The 

efficacy of the proposed methodology is checked by the two 

state-of-art classifiers: support vector machine (SVM) and 

random forest. 

 

II. PROPOSED METHODOLOGY 

The flowchart describing the experimental methodology is 

detailed in Fig. 4. First of all, data acquisition of vibration 

signals from both healthy and damaged bearing was done. 

Then decomposing and denoising of each the segmented sub-

signal was performed using EEMD. Significant IMFs are 

selected on the basis of their similarity index with original 

signal based upon the dynamic time wrapping (DTW) 
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algorithm. Residual signal is obtained by subtracting the sum 

of ineffective IMFs from the sum of significant IMFs. 

Statistical features of each of the selected IMF the statistical 

features are computed. Finally calculated features are used to 

describe the states of the bearing via classification through RF. 

Statistical features that better describes the health conditions of 

the roller bearings were extracted. Adopting the supervised 

machine learning through classifiers based on SVM and RF 

raises diagnosis accuracy. 

 

 

 
Fig. 1Experimental methodology 

 

III. EXPERIMENTAL TEST RIG 

The experimental rig, as shown in Fig.2, is basically an 

electro-mechanical system. The motor-side bearing is the 

component under examination. 

 

 
Fig.2   Bearing test rig 

 

Electro-discharge Machining was used to seed localized 

defects on inner and outer races, with varying degrees of 

damage. The point defects with the diameter ranging from 3 to 

5 mm were introduced. The bearing was operated at six 

distinct speeds, ranging from 25 to 50 Hz. The speed‘s 

variation, is attained by variable frequency drive (VFD). Data 

was collected at a sampling rate of 65500 k samples/s. The 

acquired experimental data is detailed in Table1, where, (i). 

HTY is data for healthy bearing (ii). IRF is bearing data with 

inner race fault (iii). ORF is bearing data with outer race fault 

 

 

Experimental Test Rig   

       

             
IRFs   

     Vibration Signal x(t)   

    
EEMD   

Obtaining Sub - bands (IMFs)   

Selection of effective  IMfs       

R(t) = x(t)  –   Sum (ineffective IMFs)    

             
ORFs   

             
HTY   

Features Extraction from R(t)    

Features based fault classification    
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Fig.3 PE values at different levels 

 
Fig.4 Tests bearings with IRF 

 

There are a total of 40 experimental signals that are tabulated 

in Table1. The 6 signals denote a healthy bearing state, while 

the 36 signals are acquired for faulty bearing. With a sampling 

time of 5.2 seconds, 65,536 data points were taken for each 

recorded signal. 

 

Table -1Experimental conditions (∗ -available data) 

 
 

IV. EXPERIMENTAL ANALYSIS 

In this research work the dynamic response of the system with 

healthy bearing for different speeds their time–domain 

representation are obtained and plotted in Figure 5. The time 

domain graphs for the healthy bearing, with an operating 

speed of 25-50 Hz, are shown in Fig. 5(a)-(f).With increase in 

the fault severity the overall vibration amplitude is increased 

and this increase can be observed from Fig. 6. The figure is 

plotted for the IRFa with the fault severity of 3 mm at different 

operating speeds. Figure 6 (a) is plotted for operating speed of 

25 Hz and then plots for the various speeds are obtained in 

Fig. 6 (b)-(f), respectively. Similar trends can be observed in 

Figure 7 for the bearings with ORFa with the fault severity of 

3m. Fig. 7(a)-(d) are the time domain representation of signals 

acquired for the bearing with faulty outer race at variable 

speed conditions. The impulses in the signal are indicative of 

the faulty bearing. 
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(a)                                                                       (b) 

 
(b)                                                                      (d) 

 

 
(e)                                                                (f) 

Figure 5: Time domain signals for the healthy bearing at various speeds: (a) 25Hz;(b) 30 Hz; (c) 35 Hz; (d) 40 Hz; (e) 45 Hz, and 

(f) 50 Hz 

 

 

 



International Journal of Engineering Applied Sciences and Technology, 2025 
Vol. 9, Issue 10, ISSN No. 2455-2143, Pages 50-72 

Published Online February 2025 in IJEAST (http://www.ijeast.com) 
 

54 

 
(a)                                                                          (b) 

 

 
(c)                                                             (d                     

 
(e)                                                                          (f) 

Figure 6: Time domain signals for IRF with the fault size of 3mm: (a) at 25 Hz;(b) at 30 Hz; (c) at 35 Hz; (d) at 40 Hz; (e) at 45 

Hz; (f) at 50 Hz 
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(a)                                                                               (b) 

 
(c)                                                                             (d) 

 
(e)                                                                                (f) 

Figure 7: Time domain signals for ORF with the fault size of 3mm: (a) at 30 Hz;(b) at 40 Hz; (c) at 25 Hz; (d) at 30 Hz; (e) at 45 

Hz; (f) at 50 Hz 
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(a)                                                                                  (b) 

 

 
(c)                                                                                          (d) 

 
(e)                                                                       (f) 

Figure 8: Time domain signals for IRF with the fault size of 4mm: (a) at 25 Hz;(b) at 30 Hz; (c) at 35 Hz; (d) at 40 Hz; (e) at 45 

Hz; (f) at 50 Hz 

 

 



International Journal of Engineering Applied Sciences and Technology, 2025 
Vol. 9, Issue 10, ISSN No. 2455-2143, Pages 50-72 

Published Online February 2025 in IJEAST (http://www.ijeast.com) 
 

57 

 
(a)                                                                           (b) 

 
(c)                                                              (d) 

 
(e)                                                                    (f) 

Fig. 9: Time domain signals for ORF with the fault size of 4mm: (a) at 25 Hz;(b) at 30 Hz; (c) at 35 Hz; (d) at 40 Hz; (e) at 45 

Hz; (f) at 50 Hz 

 

B. EEMD on Experimental Signal- 

The acquired machine signals usually have low signal-to-noise 

ratio (SRN). The SRN of a signal can be enhanced by pre-

processing. The pre-processors are usually the electronic filters 

and decomposes the signal into different sub-bands. The EMD 

based filters are extensively applied to decompose the acquired 

machine signals. Many advancement to the conventional EMD 

algorithm were reported time-to-time by various researchers. 

One such advancement is the EEMD technique, to overcome 

mode mixing problem and gives finer results than EMD. The 

EEMD technique is a powerful tool for non-linear and non-

stationary signal analysis. 

Each signal reflecting different experimental conditions was 

first decomposed by EEMD. The decomposed sub-bands are 

called intrinsic mode functions (IMFs). The various 

parameters used for the algorithms of EEMD are: 

(i). the standard deviation of the additional noise to the 

standard deviation of the signal is 0.2. (ii). Ensemble number 

for the EEMD = 120. 
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Features extraction: In the present study five statistical and 

five entropy features are extracted from the residual signal. 

The detail of them are: Statistical features (a) Root mean 

square value (RMS), (b) Kurtosis (Ku), (c) Standard Deviation 

(SD), (d) Impulse factor (IF), (e) Peak-to-RMS (pk2rms). 

Entropy features (a) Approximate Entropy (ApEn), (b) Sample 

Entropy (SampEn), (c) Fuzzy Entropy (FzEn), (d) Permutation 

Entropy (PE), (e) Dispersion Entropy (DE). 

 

C. EEMD of signals acquired for healthy bearing 

Decomposition levels for healthy bearing at different operating 

speeds are given in Figure 10 (a-f). 

 

 
(a)                                                                             (b) 

 
(c)                                                                 (d) 

 
(e)                                                                            (f) 

Fig.10 IMF decomposition obtained through EEMD of Healthy bearing signals:(a)25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 Hz; (e) 45 

Hz; and (f) 50 Hz 
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D.EEMD on signals acquired of bearings with IRF- Decomposition levels of bearing with IRF, for the fault 

severity of 3 mm, 4mm and 5mm at different operating 

conditions are given in Fig 11, Fig12 and Fig.13 respectively. 

 

 
(a)                                                                      (b) 

 

 
(c)                                                                                    (d) 

 

 
(e)                                                                           (f) 

Fig. 11 IMF decomposition obtained through EEMD of bearing‘s with IRF of3mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 Hz; 

(e) 45 Hz; and (f) 50 Hz 
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(a)                                                                     (b) 

 

 
(c)                                                                   (d) 

 

 
(e)                                                                           (f) 

Fig.12IMF decomposition obtained through EEMD of bearing‘s with IRF of4mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 Hz; 

(e) 45 Hz; and (f) 50 Hz 
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(a)                                                                              (b) 

 

 
(c)                                                                          (d) 

 
(e)                                                                             (f) 

Fig. 13IMF decomposition obtained through EEMD of bearing‘s with IRF of5mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 Hz; 

(e) 45 Hz; and (f) 50 Hz 
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E.EEMD on signals acquired of bearings with ORF- Decomposition levels of bearing with ORF, for the fault 

severity of 3 mm, 4mm and 5mm at different operating 

conditions are given in Fig. 14, Fig.15 and Fig.16 respectively. 

 

 
(a)                                                                                  (b) 

 
(c)                                                                                   (d) 

 
(e)                                                                                 (f) 

Fig. 14 IMF decomposition obtained through EEMD of bearing‘s with ORF of3mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 

Hz; (e) 45 Hz; and (f) 50 Hz 
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(a)                                                                        (b) 

 
(c)                                                                                (d) 

 
(e)                                                                          (f) 

Fig. 15 IMF decomposition obtained through EEMD of bearing‘s with ORF of 4mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 

Hz; (e) 45 Hz; and (f) 50 Hz 
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(a)                                                                                      (b) 

 
(c)                                                                                    (d) 

 
(e)                                                                                    (f) 

Fig. 16IMF decomposition obtained through EEMD of bearing‘s with ORF of 5mm, at: (a) 25 Hz; (b) 30 Hz; (c) 35 Hz; (d) 40 

Hz; (e) 45 Hz; and (f) 50 Hz 

 

In the present study, the residual signals are obtained by 

subtracting the sum of insignificant IMFs from the original 

signals. The selection of significant IMFs is based upon their 

similarity index obtained using DTW algorithm. Five-

statistical and five entropy features are extracted as the input 

features. These features are used to train and test two 

classifiers based on ―support vector machine (SVM) and 

random forest (RF)‖ to detect the fault type in the bearing. 

R(t) = x(t) − sum(insignificant IMFs)         (1) 

The statistical and entropy-based feature values for the 

residual signal of healthy bearing, acquired at different speeds, 

are computed and tabulated. Table 2 can be referred for 
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statistical feature values of healthy bearing running at different 

speeds. The values of different entropy-based features, 

calculated at different operating conditions can be observed 

from Table.4 

 

Table- 4 Statistical features: Extracted from EEMD based residual signal of healthy bearing 

 
 

Table- 5: Entropy features: Extracted from EEMD based residual signal of healthy bearing 

 
 

After extracting the statistical and entropy features from the 

residual signal of healthy bearing at different speeds, the 

feature extraction is done for the bearings with inner race 

faults. The both statistical and entropy-based features were 

extracted for different types of IRFs at different operating 

conditions. The values of the different statistical and Entropy 

features obtained for the fault size of 3mm, 4mm and 5mm, 

are tabulated in Table 4, Table 5, Table 6, Table7, Table8 and 

Table 9 respectively. 

 

 
Table-6 Statistical features: Extracted from EEMD based residual signal of bearing with IRF (for the fault severity of 3 mm) at 

different speeds 
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Table-7 Statistical features: Extracted from EEMD based residual signal of bearing with IRF (for the fault severity of 4 mm) at 

different speeds 

 

 
Table-8: Statistical features: Extracted from EEMD based residual signal of bearing with IRF (for the fault severity of 5 mm) at 

different speeds 

 

 
 

Statistical and entropy-based features were extracted for 

different types of ORFs at different operating conditions. The 

values of the different statistical and entropy features obtained 

for the fault size of 3mm, 4mm and 5mm, are tabulated in 

Table 10, Table 11, Table 12, Table13, Table14 and Table 15, 

respectively. 
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Table-9 Entropy features: Extracted from EEMD based residual signal of bearing with IRF (for the fault severity of 5 mm) at 

different speeds 

 

 
Table -10: Statistical features: Extracted from EEMD based residual signal of bearing with ORF (for the fault severity of 3 mm) 

at different speeds 

 
Table -11: Statistical features: Extracted from EEMD based residual signal of bearing with ORF (for the fault severity of 4 mm) 

at different speeds 

 

 
Table- 12: Statistical features: Extracted from EEMD based residual signal of bearing with ORF (for the fault severity of 5 mm) 

at different speeds 
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Table 13:  Entropy features: Extracted from EEMD based residual signal of bearing with ORF (for the fault severity of 3 mm) at 

different speeds 

 

 
Table 14:  Entropy features: Extracted from EEMD based residual signal of bearing with ORF (for the fault severity of 4 mm) at 

different speeds 

 

 
 

Two types of bearing faults with different degree of damage 

were considered in the present study: Inner race fault, outer 

race fault. For each type of fault, its size was varied from 3 

mm to 5 mm with an intermittent fault size of 4 mm.  

For Group-I, the features for healthy bearings and IRFs with 

various degrees of damage at various speeds were considered. 

Thus Group-I contain 60 features extracted from the residual 

signal of healthy bearing and 180 features extracted from the 

bearings with IRF damages. Total number of features in 

Group-I is thus 240. Table 16 show the accuracy obtained with 

both of the classifiers. 
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For Group-II, the data for healthy bearing (60 features) and 

ORFs (180 features) with various degrees of damage at 

various speeds were considered. Table 17show the accuracy 

with both the machine learning tools. 

For Group-III, the data for IRFs (180 features) and ORFs (180 

features) with various degrees of damage at various speeds 

were considered. Table 18show the accuracy with both the 

classifiers. 

For Group-IV, the data for healthy bearing (60 features), IRFs 

(180 features), and ORFs (180 features) with various degrees 

of damage at various speeds were considered. Table 19 show 

the accuracy with both the classifiers. 

 

Table -15 Groups for classification (‗√‘ included data and ‗-‘ data not included) 

 
 

Table- 16: Classification accuracy for Group I 

 

 
 

Table- 17 Classification accuracy for Group II 

 
Table -18 Classification accuracy for Group III 
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Table -19 Classification accuracy for Group IV 

 
 

V. CONCLUSION 

Based on ensemble empirical mode decomposition (EEMD) 

residual signals, this study presents an effective method for 

fault detection in the roller bearings. In the present study, the 

EEMD is used to pre-process the acquired bearing vibration 

signals. The sensitive intrinsic mode functions (IMFs) are 

selected on the basis of their similarity index value computed 

by applying the dynamic time wrapping algorithm. The 

bearing health conditions are then identified using five 

statistical and five entropy based features extracted from the 

residual signal and fed into two state-of-the-art classifiers, 

―support vector machine (SVM) and random forest (RF)‖. The 

results of the diagnosis show that the proposed method is 

capable of reliably identifying various types of bearing 

defects.It can be stated that EEMD based residual signals can 

be used to achieve a good fault recognition accuracy. It 

accurately detects the various sorts of bearing defects. 
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